equidistant$25670$ - определение. Что такое equidistant$25670$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое equidistant$25670$ - определение

MATHEMATICAL CURVE
Equidistant curve; Hypercircle; Hypercyclic; Hypercycles (geometry); Hypercycle (hyperbolic geometry); Equidistant Curve
  • P}}
  • The [[alternated octagonal tiling]], in a [[Poincaré disk model]], can be seen with edge sequences that follow hypercycles.

Equidistant set         
  • Animation showing the generation of '''parabola''' as an equidistant set of a singleton point and a straight line.
  • Animation showing the generation of an '''ellipse''' as the equidistant set of two circles.
  • Animation showing the generation of one branch of a '''hyperbola''' as the equidistant set of two circles.
  • Image showing equidistant set of two straight lines in a Euclidean plane.
Midset; Equidistant points
In mathematics, an equidistant set (also called a midset, or a bisector) is a set each of whose elements has the same distance (measured using some appropriate distance function) from two or more sets. The equidistant set of two singleton sets in the Euclidean plane is the perpendicular bisector of the segment joining the two sets.
equidistant         
  • circumscribed]] by the circle C. The circumcentre O is equidistant to each point on the circle, and a fortiori to each vertex of the polygon.
POINT THAT IS AT THE SAME DISTANCE TO EVERY OBJECT IN A GIVEN SET
Equi-distant; Equidistance
adj. equidistant from
Equirectangular projection         
  • True-colour satellite image of Earth in equirectangular projection
  • Equirectangular projection with [[Tissot's indicatrix]] of deformation and with the standard parallels lying on the equator
MAP PROJECTION THAT MAPS MERIDIANS AND PARALLELS TO VERTICAL AND HORIZONTAL STRAIGHT LINES, RESPECTIVELY, PRODUCING A RECTANGULAR GRID
Plate carrée projection; Equidistant cylindrical projection; Equidistant Cylindrical Projection; Plate Carree Projection; Geographic Projection; Geographic projection; Plate Carrée Projection; Equirectangular Projection; Equirectangular; Plate-carré; Square projection; Plate carre; Plate-carre; Plate carré; Plate carree projection; Plate carree; Carte Parallelo-Grammatique Projection; Carte Parallelogrammatique Projection; La Carte Parallelogrammatique; Carte parallelogrammatique projection; Equidirectional projection; Geographical projection; Plate carrée; Rectangular projection; Marinus projection; Marinus map projection; Equirectangular map projection
The equirectangular projection (also called the equidistant cylindrical projection or la carte parallélogrammatique projection), and which includes the special case of the plate carrée projection (also called the geographic projection, lat/lon projection, or plane chart), is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100.Flattening the Earth: Two Thousand Years of Map Projections, John P.

Википедия

Hypercycle (geometry)

In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis).

Given a straight line L and a point P not on L, one can construct a hypercycle by taking all points Q on the same side of L as P, with perpendicular distance to L equal to that of P. The line L is called the axis, center, or base line of the hypercycle. The lines perpendicular to L, which are also perpendicular to the hypercycle, are called the normals of the hypercycle. The segments of the normals between L and the hypercycle are called the radii. Their common length is called the distance or radius of the hypercycle.

The hypercycles through a given point that share a tangent through that point converge towards a horocycle as their distances go towards infinity.